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Abstract. We have studied the Hubbard model with bond–charge interaction on a triangular
lattice for a half-filled band. At the point of particle–hole symmetry the model could be analysed
in detail in two opposite regimes of the parameter space. Using a real-space renormalization group
(RG) we calculate the ground-state energy and the local moment over the whole parameter space.
The RG results obey the exact results in the respective limits. In the intermediate region of the
parameter space, the RG results clearly show the effects of the non-bipartite geometry of the lattice
as well as the absence of symmetry in the reversal of the sign of the hopping matrix element.

1. Introduction

In spite of extensive efforts over the last few years, the problem of electronic correlation in
low-dimensional systems remains to be clearly understood. Models of interacting electrons are
difficult to handle in one and two dimensions owing to strong fluctuations. While there are a few
exact solutions for one dimension (1-D) [1] and infinite dimensions [2], the situation is worse
for two dimensions (2-D). Standard techniques like mean-field approximation or perturbative
calculations are of very limited use in treating the intermediate-to-strong correlation in
low-dimensional systems which are typically dominated by strong fluctuations. Numerical
simulations and exact diagonalizations are also limited to small cluster sizes, because the
dimension of the Hilbert space soon becomes too large to be handled as one goes from one
to two dimensions. Therefore, it seems a worthwhile enterprise to apply an approximate
real-space renormalization group (RG) known as the block RG (BRG) [3, 4] in this context.
This works reasonably well for 1-D systems [5–7] and over the whole range of the coupling
constants. This method employs a truncation of the Hilbert space, retaining a few low-lying
states only, to bring out the essential ground-state properties. Although the efficacy of the
truncation procedure is much more satisfactorily handled in a recently developed RG scheme
known as the density-matrix RG (DMRG) method [8], the latter is yet to be developed for a
truly 2-D system. The BRG method has already been applied to interacting electrons in 2-D [9]
but only for bipartite lattices. It is interesting to see how it works in the case of a non-bipartite
lattice like the triangular one. On the other hand, the problem of interacting electrons on a
triangular lattice has been addressed for a long time [10–13] in view of the rich phase structure
including the possibility of frustration [14]. In particular,3He on graphite was considered to
be a good example of the Hubbard model [15] on a triangular lattice [10]. Recent work on
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organic superconductors likeκ-BEDT-TTF compounds also investigates the phase diagrams
of interacting-electron models on anisotropic triangular lattices [16].

In the present work we study a generalized Hubbard model with bond–charge interaction
on the 2-D triangular lattice at half-filling by using the BRG. In section 2 we present the
model and the renormalization scheme as suitably adapted to the present problem. Section 3
summarizes some of the exact solutions of this problem in limiting cases. In section 4 we focus
on our results obtained from the RG study and make comparisons with the exact solutions.
Section 5 concludes the present work.

2. The model and the RG scheme

The generalized Hubbard model with bond–charge interaction is defined as follows:

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ +X

∑
〈ij〉,σ

c
†
iσ cjσ (ni−σ + nj−σ )− µ

∑
i

ni +U
∑
i

ni↑ni↓ (1)

wherec†
iσ (ciσ ) creates (annihilates) a particle with spinσ in a Wannier orbital located at the

site i; the corresponding number operator isniσ = c†
iσ ciσ . Hereni = niσ + ni−σ . The sum

over 〈ij〉 denotes contributions from distinct nearest-neighbour pairs of sites on a triangular
lattice.µ is the chemical potential. We focus our attention on the special case withX = t for
which the present model becomes particle–hole (p–h) symmetric even on the triangular lattice.
In fact it has been shown that for some realistic systemsX ' t [17]. Furthermore, the choice
X = t results in some simplification in implementing the RG scheme and forcesµ = U/2 for
half-filling. Moreover, at this special value ofX we have some exact results for comparison.
One should remember, however, that there is not → −t symmetry due to the non-bipartite
nature of the lattice.

Now, forX = t and for a half-filled band (〈ni〉 = 1) one can putµ = U/2 and rewrite
the Hamiltonian (2) as follows:

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ (1− ni−σ − nj−σ ) +U

∑
i

(
1

2
− ni↑

)(
1

2
− ni↓

)
+D

∑
i

1i +
U

2
N

(2)

where the constantD = −µ/2 will account for the renormalization of the vacuum energy.
Here we have added a constant termNU/2 to the Hamiltonian given by (1) to compensate for
the chemical potential term subtracted therefrom. We just keep aside this constant term for the
purpose of renormalizing the parameters in the Hamiltonian and then add the same constant
to the ground-state energy at the end. The Hamiltonian has several conserved quantities: total
number of particlesν, total spinS and thez-componentSz of the total spin, besides the p–h
symmetry pointed out earlier. We divide the 2-D lattice withN sites intoN/3 triangular
blocks of three sites each (figure 1). The block Hamiltonian is then diagonalized for the
three-site block. Since we are interested in the ground-state properties of the system we
truncate the Hilbert space for the three-site blocks and retain only four low-lying states of the
block Hamiltonian governed by the symmetries mentioned above together with the point group
symmetry of the block. It is easy to see that the block Hamiltonian is block diagonalizable
in terms of the good quantum numbersν, S andSz. The states with{ν = 2, S = Sz = 0},
{ν = 3, S = Sz = 1/2}, {ν = 3, S = −Sz = 1/2} and{ν = 4, S = Sz = 0} are considered
for this purpose. Of these, the states in the first and the fourth group are connected by the
p–h symmetry while those in the second and third are connected by spin-reversal symmetry.
However, the point group symmetry in the 2-D lattice imposes further restriction on the choice
of the states [9].
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Figure 1. Two neighbouring triangular blocks used in the BRG method. The sites are numbered in
an anticlockwise direction. Broken lines show the two connecting paths between the two blocks.
One has to calculate contributions (identical for symmetry-adapted blocks) from both of the bonds
in calculating the renormalized hopping (3).

To resolve this point we consider the symmetry group C3v [18] of the basic triangular
block. We take our eigenstates of the block Hamiltonian to also be the eigenstates ofR(C3v),
the matrix representations of the group elements of C3v. When choosing the four states to be
retained, we simply take one from each of the four groups, so that all of them lie in the same
representation of C3v, such that the contribution to the ground-state energy be the minimum.
This leads to the following RG equations which relate the renormalized parameters (primed
quantities) to the original parameters (unprimed ones) in the Hamiltonian:

U ′ = 2(E2 − E3)

D′ = 3D + (E2 +E3)/2

t ′ = 2 Re[λ∗(λ− 2λ′)]t
(3)

whereE2 andE3 are the lowest eigenvalues in the subspaces{ν = 2, S = Sz = 0} and
{ν = 3, S = Sz = 1/2}, respectively; and

λ = 〈ν = 2, S = Sz = 0|cb↑|ν = 3, S = Sz = 1
2〉

λ′ = 〈ν = 2, S = Sz = 0|cb↑nb↓|ν = 3, S = Sz = 1
2〉.

(4)

λ∗ is the complex conjugate ofλ and Re denotes the real part. Here the subscriptb refers to the
site index of aboundarysite of the block. For a triangular block, however, this could be any of
the three sites. The factor of 2 appears in the renormalization of the hopping due to there being
two connecting paths between the two neighbouring three-site blocks (figure 1). We illustrate
the scheme of the RG calculations using the recursion relations (3) in the appendix.

Using these recursion relations, one can find out the ground-state energyE0 from

E0 = lim
n→∞D

(n) +NU/2
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where the superscript refers to thenth stage of iteration. The termNU/2 in the above expression
comes from the constant term added in (2). One could study the recursion of any suitable
operator to calculate any other physical quantity within this approximation. For example, we
calculate the local momentL0 given by

L0 = 3

4
(n↑ − n↓)2.

The recursion relation forL0 turns out to be

L0 = A +BL′0
whereA andB are numbers depending on the components of the basis states retained in course
of basis truncation. Since all three sites in the basic triangular block are in the same status
(after adapting the C3v symmetry), one can use any of them for finding the recursion ofL0.

Table 1. The energies of the eigenstates of the block Hamiltonian corresponding toν = 2 and
ν = 3 areE2 andE3, respectively. These are tabulated for different possible combinations of states
belonging to different irreducible representations of C3v. We adopt standard group theoretical
notation [18] (Ai for 1-D irreducible representations and E for the 2-D one).

Combination given by
irreducible representation E2 E3 E2 +E3

A1 −2t − U/4 U/4 −2t
A1 3U/4 U/4 U

E t − U/4 −3U/4 t − U
E t − U/4 −√3t +U/4 (

√
3 + 1)t

E t − U/4 √
3t +U/4 −(√3− 1)t

E 3U/4 −3U/4 0

E 3U/4 −√3t +U/4
√

3t +U

E 3U/4
√

3t +U/4
√

3t +U

It is interesting to note that due to the group theoretical restriction on the choice of the
truncated basis it is not possible, in general, to select the lowest-energy states from all of the
four groups at a time. The states with the lowest energies in all four groups do not necessarily
belong to the same irreducible representation of C3v. If such states are retained, then the matrix
elementλ defined in (4) will be zero. So instead of the states with lowest energy one targets the
states belonging to the same irreducible representation. This problem did not arise in the 1-D
cases. Therefore, it is possible here to choose any of the possible combinations of four states
(from the four groups) compatible with the symmetry group. Again, from (3), one can see that
the contribution to the ground-state energy from each iteration is∝E2+E3. Then it is natural to
seek for the combination which gives the lowest value of this quantity. However, one should be
careful about the value of the renormalized hoppingt ′ thus generated, because this in turn will
seriously affect the contribution to the energy in the subsequent iteration. We have, therefore,
taken into consideration all of the possible channels permitted by the symmetry group up to
three subsequent iterations and then considered the energetically most favourable ones for
the next iterations. For example, consider the case in which we have an optimum choice of
five distinct channels (each with a unique set of four states belonging to a given irreducible
representation) to start with. In three successive iterations it gives rise to 125 (=5× 5× 5)
channels out of which we retain the best 25 for the next step. This is an optimized way to
achieve the true ground state. Different possible combinations of the two- and three-particle
states are shown in table 1 in terms of the irreducible representation, as are the corresponding
energiesE2 andE3. It is evident from the table that the contribution(E2+E3)/2 to the constant
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termD in the Hamiltonian (2) makes just a few combinations advantageous in constructing
the RG scheme.

3. Exact results for the model

The exact ground-state energy could be calculated for the present model (2) in two opposite
extremal ranges of the parameter space inU/t . To do this, we try to match a variational upper
boundEup to the exact energy to a lower boundElo. To find the upper boundEup we choose
a trial state|9trial〉 and calculate, by the variational principle,

Eup = 〈9trial|H |9trial〉
〈9trial|9trial〉 .

To calculate the lower boundElo, we break up the Hamiltonian (2) into a sum of the cluster
Hamiltonians corresponding to the smallest triangular clusters. These could be exactly
diagonalized. Then, again by the variational principle,Elo is given by

Elo =
∑
α

Eαmin +C

whereEαmin is the lowest eigenvalue for theαth cluster andC is the constant term, if there is
one, appearing in the Hamiltonian. To find the lower bound, we rewrite the Hamiltonian (1)
in the following form:

H =
2N∑
α=1

[
− t

2

∑
〈ij〉∈α,σ

c
†
iσ cjσ (1− ni−σ − nj−σ ) +

U

12

∑
i∈α
(ni↑ − ni↓)2

]
+
U

2
N

=
2N∑
α=1

Hcluster(α) +
U

2
N (5)

where we have usedµ = U/2 and compensated for this by adding a termNU/2, N being
the number of lattice sites. So, here,C = NU/2. In the above form of the Hamiltonian we
have summed over all possible (2N in number) triangular clustersα. The fractional numbers
appearing witht andU are due to the over-counting of the bonds (twice each) and the sites
(each being shared by six adjacent triangles).Hcluster(α) is the cluster Hamiltonian of theαth
cluster for which we have to find the lowest eigenvalueEαmin.

Table 2. Eigenvalues of the cluster HamiltonianHcluster(α)as given in (5) corresponding to different
number (ν) of particles.

ν Energy

0, 6 0
1, 5 −t − U/12, t/2− U/12
2, 4 0,−t − U/6, t/2− U/6
3 ±t − U/12,−U/4,±t/2− U/12

We categorize the results into two regimes as follows:

(a) U > 0: for very large positive values ofU the system is expected to go over to a phase
with singly occupied sites [17]. We choose the trial wavefunction as

|9〉 =
∏
i∈L
c

†
i↑
∏
j∈L′

c
†
j↓|0〉 (6)

where|0〉 is a site vacuum andL andL′ are arbitrary disjoint sets of lattice sites, each
containingN/2 lattice points, which together build up the whole lattice. Using this|9〉,
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we obtain an upper boundEup = 0. We find the different energy eigenvalues belonging
to different values ofν in a basic triangular plaquetteα to be as shown in table 2. Now
the lowest of these,Eαmin, will be−U/4 if

−U/46 Min [±t − U/12,±t/2− U/12,−t − U/6, t/2− U/6, 0] . (7)

This is true forU > 12|t |. ThenEmin = −U/4. Consequently,Elo = 2N × (−U/4) +
NU/2= 0= Eup.
So, in theU > 0 sector, the exact ground-state energyE0 = 0 for U > 12|t | and the
ground state becomes a paramagnetic insulator with all sites singly occupied.

(b) U < 0: here we choose the trial wavefunction as follows:

|9〉 =
∏
i∈L
c

†
i↑c

†
i↓|0〉 (8)

whereL denotes a set of arbitrarily chosenN/2 sites. This choice givesEup = NU/2.
Now using the possible values of the lowest energies in a triangular plaquette as listed in
table 2, we find thatEmin = 0 if

06 Min [±t − U/12,±t/2− U/12,−t − U/6, t/2− U/6,−U/4] . (9)

This corresponds toU 6 −12|t | and consequentlyElo = NU/2= Eup.
So, in theU < 0 sector, the exact ground-state energyE0 = NU/2 forU 6 −12|t | and
the ground state becomes an insulator composed ofN/2 ‘doublons’.

{5

{4

{3

{2

{1

0

1

E0=N

(a)

t > 0

{5

{4

{3

{2

{1

0

1

{10 {8 {6 {4 {2 0 2 4 6 8 10

U=t

(b)

t < 0

Figure 2. A plot of E0/N , the ground-state energy per site, as a function ofU/t for (a) t > 0 and
(b) t < 0. The dotted lines correspond toE0 = NU/2 forU/t 6 0 andE0 = 0 forU/t > 0 and
thus show the asymptotic exact results in the respective limits.
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4. Results obtained in the RG scheme

The ground-state energy as a function of the coupling constantU/t , calculated in the RG
scheme, is shown in figures 2(a) and 2(b) for the two casest > 0 andt < 0, respectively. It
appears that the curves agree completely with the asymptotic solutions given above. In fact,
E0 reaches the zero value well before the threshold value ofU , Uc1 = 12|t |, as one increases
the value ofU/t . However, there appears a difference between the two values ofUc1 for t > 0
andt < 0. This merely reflects the lack oft →−t symmetry owing to the tripartite nature of
the lattice. Also, on the other side ofU/t = 0 the energy curves are in complete agreement
with the available exact results. Here also,E0 takes the valueNU/2 at a much higher value
of U compared to the threshold valueUc2 = −12|t | as the value ofU/t is decreased. It
appears that the wide region in the parameter space (−12|t | 6 U 6 12|t |) for which the exact
solution could not be obtained is much narrower in reality. The energy curve obtained in the
RG calculation smoothly interpolates between the two exactly solvable opposite limits. In the
intermediate region we find thatt > 0 always gives the lower energy. This can be checked
against a naive calculation for any reasonable size of a cluster having a triangular geometry.

0

0.25

0.5

0.75

L0

(a)

t > 0

0

0.25

0.5

0.75

{10 {8 {6 {4 {2 0 2 4 6 8 10

U=t

(b)

t < 0

Figure 3. A plot of the local momentL0 as a function ofU/t for (a) t > 0 and (b)t < 0.

The local moment, which measures the proliferation of ‘doublons’ in the ground state,
is plotted againstU/t for t > 0 andt < 0 in figures 3(a) and 3(b), respectively. As we can
readily see, the singly occupied insulating phase given by the wavefunction (6) corresponds to
L0 = 3/4= 0.75 forU > 12|t |. Similarly, forU 6 −12|t |, the wavefunction (8) corresponds
to L0 = 0. These are reproduced in the RG scheme in accordance with the energy curves.
The parameter space in between these two insulating phases shows a non-trivial discrepancy
between the casest > 0 andt < 0. A large plateau atL0 = 0.5 appears fort > 0 which is
totally absent in the case oft < 0. For the latter we find a wide plateau atL0 = 0.25. Other
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(a)

(b)

Figure 4. The energetically most favourable configurations in a three-site cluster for a typical
point in the metallic region,U = |t | = 1. (a) Configurations withν = 2, 4 dominate fort > 0.
Such configurations correspond toL0 = 0.50. (b) Configurations withν = 3 dominate fort < 0,
corresponding toL0 = 0.25. In this schematic figure,↑ (↓) stands for an electron with ‘up spin’
(‘down spin’) at a given Wannier orbital.◦ denotes an empty site.

small structures in the local moment curves may be consequences of finite-size effects. The
plot of the local moment clearly shows that the extents of pairing (in the form of doublons)
are different in the two cases, although both of them possibly correspond to a metallic ground
state. It is important to note that such a metallic phase in the same model on a 1-D chain
gives a free-fermionic local momentL0 = 0.375 [6]. These plots also show that the phase
transitions occurring atUc1 andUc2 are abrupt as in the 1-D case [6]. The departure from
L0 = 0.375 in the metallic case is a consequence of the lattice geometry. To naively illustrate
this point, let us consider the specific case ofU = |t | = 1.0. As one can readily check from
table 2, the lowest energy in each triangular plaquetteα comes fromν = 2, 4 if t > 0; typical
configurations corresponding to this are shown in figure 4(a). Clearly, such configurations
will dominate in the global wavefunction and the value ofL0 will be pushed towards 0.5. On
the other hand, a similar observation reveals that in case oft < 0, the lowest contribution
comes from theν = 3 sector with configurations similar to those shown in figure 4(b). These
obviously lower the value ofL0 towards 0.25. In reality, however,L0 is slightly greater than
0.25 at this point fort < 0, as one can see from figure 3(b). This is because of the mixing of
other configurations for optimization of the hopping process between different clusters. Also,
there might be finite-size effects.

The difference between the values ofUc2 for t > 0 andt < 0 is distinctly visible from
the plots of the local moment. Thus the local moment plot very clearly captures the lack of
t →−t symmetry which is essential for the lattice under consideration.

5. Conclusions

Summarizing, we have studied the Hubbard model with the bond–charge interaction on a
triangular lattice at the special point of particle–hole symmetry. At this point we obtain exact
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results in two opposite limits of the parameter space. The system behaves as a paramagnetic
insulator above a certain valueUc1 of the on-site correlation. Below the critical valueUc2

it undergoes a transition to an insulating state of disordered doublons. To explore the full
parameter space we employ a real-space version of the RG. The RG scheme is suitably adapted
for this purpose. The ground-state energy and the local moment values calculated in the RG
scheme reproduce the exact results as they did in the 1-D case [6] too. This lends some support
to the present RG approximations. In the intermediate range of the parameter space, where
no exact solution has been available, the RG results indicate that the degree of pairing (in
terms of the formation of local doublons) is different from that in the 1-D counterpart of this
problem. The triangular geometry plays a crucial role there. Moreover, in this region, both
the energy and the local moment plots show up the effect of losing thet → −t symmetry.
The parameter space betweenUc1 andUc2, corresponding to a possible metallic phase (as it
did in the 1-D counterpart [6, 19]), appears to be less wide in the RG calculations compared
to the exact solution. The present study gives an indication that the RG scheme used here
could be successfully applied to other cases in 2-D. Extension to the cases withX 6= t seems
interesting, although it is well known that the lack of particle–hole symmetry creates some
problem with the present form of the RG on a non-bipartite lattice. It is interesting to look for
the short-ranged correlations, if any, in the intermediate region of the parameter space. It is
also interesting to know the effect of the finite block size on the satellite plateaus in the local
moment plot; this requires a larger block in the RG analysis (a body-centred hexagon is the
next choice after a triangle). However, the convergence of the RG results to the exact ones is
often slow with increasing block size, and the effect of the discarded states may be important
in determining the global wavefunction [8, 20]. Therefore, a better way of supplementing the
present study is to use the DMRG algorithm, which can take into account a larger number
of configurations within a block in a controlled and systematic way. Of course, the DMRG
algorithm has to be suitably adapted (to a 2-D lattice in the thermodynamic limit) for this
purpose.
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Appendix

In the present appendix we give a brief sketch of the derivation of the recursion relation (3)
quoted in the text. We have retained a suitable state of low energy in each of the subspaces
{ν = 2, S = Sz = 0}, {ν = 3, S = Sz = 1

2}, {ν = 3, S = −Sz = 1
2} and{ν = 4, S = Sz = 0}.

These states are designated|0′〉, |↑′〉, |↓′〉 and|↑↓′〉, respectively. Let the corresponding energy
eigenvalues beE0 ′ , E↑′ , E↓′ , E↑↓′ , respectively. As we have mentioned earlier, the first and
the fourth states are connected by the particle–hole symmetry while the second and the third
are connected by spin-reversal symmetry. It follows, therefore, thatE0 ′ = E↑↓′ = E2 and
E↑′ = E↓′ = E3. These four states closely resemble the single-site states|0〉, |↑〉, |↓〉 and
|↑↓〉 in that the spin quantum numbers are the same and there is a one-to-one correspondence
between the total number of electrons,ν, in such a state and the occupation number of the
corresponding single-site state (they differ by two). We, therefore, identify a three-site block
as a ‘renormalized’ site in the scaled lattice and the retained states of the three-site block as
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the ‘renormalized’ single-site states [3, 4].
The intrablock Hamiltonian could be written within the subspace of the truncated basis in

terms of the new block-fermion operators:

H ′0 =
1

2
(E2 +E3) + 2(E2 − E3)

(
1

2
− n↑′

)(
1

2
− n↓′

)
(A.1)

where the prime denotes the renormalized block-fermion operators. Comparison of this
‘renormalized’ block Hamiltonian with the single-site part of the Hamiltonian (2) leads to
the renormalization formulae forU andD in (3).

To obtain the interblock part of the Hamiltonian, we calculate the matrix elements of the
old fermion operators at the boundary siteb, cb↑ andcb↑nb↓, connecting the states that we
have retained. This leads to the renormalization oft as follows:

t ′ = 2(λλ∗ − λλ′ ∗ − λ′λ∗) (A.2)

which is equivalent to the last relation in (3).λ andλ′ were already given in (4).
Let us now illustrate the scheme of calculation of the renormalized parameters as given by

equation (3). We refer to a specific case with a choice of states belonging to the E representation
(table 1) from all of the subspaces. We find from table 1 that there could be several sets of
states from the subspaces withν = 2 andν = 3, i.e. with eigenvaluesE2 andE3 respectively.
For example, we pick up the case withE2 = t − U/4 andE3 = −3U/4.

The block state|0′〉 (with Sz = 0 andν = 2), which is an eigenvector of the block
Hamiltonian belonging to the eigenvalueE2 = t −U/4 and is simultaneously an eigenvector
of the rotation operatorsR(C3v), is given by

|0′〉 = 1

2
√

6
[|0↑↓〉 − |0↓↑〉 − 2|↑0↓〉 + 2|↓0↑〉 + |↑↓0〉 − |↓↑0〉]

+
i

2
√

2
[|0↑↓〉 − |0↓↑〉 − |↑↓0〉 + |0↓↑〉] . (A.3)

Similarly, the block state|↑′〉 (with Sz = 1/2 andν = 3), which is an eigenvector of the block
Hamiltonian belonging to the eigenvalueE3 = −3U/4 and is simultaneously an eigenvector
of the rotation operatorsR(C3v), is given by

|↑′〉 = 1

2
√

3
[|↑↓↑〉 − 2|↑↑↓〉 + |↓↑↑〉] +

i

2
[|↑↓↑〉 − |↓↑↑〉] . (A.4)

Here we have expressed a given configuration of the triangular block by|βγ δ〉 (where
β, γ, δ = 0,↑,↓ or ↑↓) such that the configuration obeys the ordering of the site indices
1→ β, 2→ γ and 3→ δ (see figure 1 for the site indices).

For the choice of these particular sets of states,

λ = 〈0′|c1↑|↑′〉 = − 1

2
√

2
+

i

2
√

6
while

λ′ = 〈0′|c1↑n1↓|↑′〉 = 0.

λ′ may have a non-zero value for other sets of states. Instead of usingc1↑ andn1↑, one could
use operators belonging to site No 2 or No 3 to finish up with the same result. This is because
all three sites are ‘boundary sites’ (as pointed out earlier) and, therefore, equivalent to each
other. These lead to the following RG equations:

U ′ = 2(E2 − E3) = 2t +U

D′ = 3D + (E2 +E3)/2= 3D + t/2− U/2
t ′ = 2 Re[λ∗(λ− 2λ′)]t = 1

6t.

(A.5)
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The renormalized parameters could be easily calculated in a similar way for any other
choice of states shown in table 1.
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